

- 4. Range the set of all _____values (y's)
- 5. Independent Variable the input variable which an experimenter has _____ over or which is not _____ by anything.
- 6. **Dependent Variable** the output variable which is found as a ______ of the independent variable.

Examples

1. Is this a function? What's the domain and range?

c. no domain: {2, 3, 4, 5, 7} range: {1, 2, 5} 5. Is this graph a function? What's the domain and range? Day 1 a. yes

6. Is this graph a function? What's the domain and range?

7. Is this table a function? What's the domain and range?

х	У
-2	2
-1	2
0	2
1	2
2	2

a. yes domain: $\{-2, -1, 0, 1, 2\}$ range: $\{2\}$ b. no domain: $\{2\}$ range: $\{-2, -1, 0, 1, 2\}$ c. yes domain: $-2 \le x \le 2$

range: {2}

- 2. Is the set {(-2, 12), (-1, 3), (0, 0), (1,3), (2, 12)} a function? What's the domain and range?
 - a. yes domain: {-2, -1, 0, 1, 2} range: {0, 3, 12}
 - b. no
 - domain: {0, 3, 12} range: {-2, -1, 0, 1, 12}
 - c. yes

domain: $-2 \le x \le 2$ range: $0 \le y \le 12$

3. Is this graph a function? What's the domain and range?

a. yes

domain: {-4,-3,-2,-1,0,1} range: {-6,-5,-4,-3,-2,-1,0,1,2,3,4}

- b. no domain: $x \ge -4$
 - range: all real numbers
- c. no

domain: $x \le -4$ range: $-6 \le y \le 4$

4. Is this graph a function? What's the domain and range?

a. yes

domain: all real numbers range: all real numbers

b. no

domain: all real numbers range: all real numbers

c. yes

domain: $-2 \le x \le 2$ range: $-3 \le y \le 3$ Day 2 Front

FUNCTION NOTATION

Using function notation is like replacing _____ with ____, so that we have f(x)=mx+b instead of y=mx+b, but it's slightly more than that.

It shows the input (x) and output (y) pair of values of a functional relationship at the same time.

f(x) = 4x - 3

Consider y = 2x + 1 versus f(x) = 2x + 1. Find y when x is 4.

Examples

If f(x) = 4 - 5x, $g(x) = 2x^2 + 14x - 16$, and $p(t) = 3(2)^t - 1$, evaluate the following using understanding of function notation.

1. f(-2)

2. g(-1)

3. p(0)

4. g(-2)

5. p(2)

6. f(-3)

Here's a function h. Evaluate h for the given inputs and find all the possible inputs for which h results in the given outputs.

7. h(5) =

8. h(-1) =

9. h(0) =

10. h(-3) =

11. x such that h(x) = -2 12. x such that h(x) = 2

The graph below represents a linear function and an absolute value function. f(x) = -x + 4 and g(x) = |x| - 6. Find the solutions to the equation f(x) = g(x).

Vertex Form	Standard Form	Intercept Form
$y = a(x-h)^2 + k$	$y = ax^2 + bx + c$	y = a(x-p)(x-q)
f a < 0, f a > 0	, the parabola is upside , the parabola is right s	e down. ide up.
Vertex	Y-intercept	X-intercept(s)
(<i>h</i> , <i>k</i>)	(0, c)	(p,0) and (q,0)
$y = 2(x - 3)^2 - 1$	$y = 2x^2 - 3x - 1$	y = 2(x - 3)(x - 1)

Graphing Quadratic Functions

Vertex Form

$$y = a(x-h)^2 + k$$

Example:

 $y = -2(x+1)^2 + 8$

a = h = k =

Vertex:

Axis of Symmetry:

1. $y = (x + 3)^2 - 5$

a = h = k =

This graph is a parabola that has been <u>reflected</u> over the x-axis, <u>stretched</u> vertically, and <u>translated left</u> 1 unit and <u>up</u> 8 units.

Vertex? Axis of Symmetry? Maximum or minimum?

a = h = k =

Vertex? Axis of Symmetry? Maximum or minimum?

Practice	F								Í										
i idotioo	Þ																		
	E	E	E																_
	E				Η														_
	F		-											_					
•																			
	E	E	E																
	┢	\vdash	-	Η	Н	-	-	Η	-		H	-	-	-	H	H	Η	-	_
	F	F	F							F				_					
	Þ																		
	F	\vdash	\vdash	Η	Н			Η	-	\vdash	H		-	-	\vdash	\vdash	Η	-	_

CONVERTING FROM STANDARD FORM TO VERTEX FORM

Completing the Square Steps for Functions and Expressions

- ✓ Check to see function is in standard form, separating ______ from _____.
- \checkmark _____ a from variable terms.
- ✓ Take _____ the coefficient of x, _____ it, ____ it inside and _____ it outside.
 - * Or vice versa
 - Don't forget what's out front!
- ✓ Factor the _____ and rewrite as a factor squared.

Examples

1.
$$f(x) = 2x^2 + 20x + 49$$

3.
$$y = -2(x - 7)^2 + 8$$

Vertex? Axis of Symmetry? Maximum or minimum?

4.
$$y = -(x + 2)^2$$

Vertex? Axis of Symmetry? Maximum or minimum?

5.
$$y = 2(x+3)^2 - 6$$

$$a = h = k =$$

Vertex? Axis of Symmetry? Maximum or minimum?

6.
$$y = -\frac{1}{2}(x+4)^2 + 7$$

Vertex? Axis of Symmetry? Maximum or minimum?

2.
$$g(x) = -3x^2 + 24x - 41$$

3.
$$h(x) = 6x^2 - 84x + 290$$

4.
$$p(x) = -4x^2 - 8x - 9$$

Day 6 Front

Graphing Quadratic Functions Standard Form $y = ax^2 + bx + c$

Example:

 $y = -2x^2 - 4x + 6$

a = c =

Maximum or minimum? Y-intercept? Vertex form?

Graphing Quadratic Functions

Day 7 Front

Intercept/Factored Form

y = a(x - p)(x - q)

y = (x+3)(x-5)

a = p = q =

x-intercept(s)? Vertex? Standard form?

This parabola has an <u>AXIS OF SYMMETRY</u> at x = -, a <u>VERTEX</u> at (-, -) which is also considered a <u>MAXIMUM</u>, a <u>Y-INTERCEPT</u> at (-, -).

1. $y = x^2 - 2x - 3$

a = c =

Maximum or minimum? Y-intercept? Vertex form?

This parabola has <u>X-INTERCEPTS</u> at (,) and (,). The <u>AXIS OF</u> <u>SYMMETRY</u> is half-way in between at x =, with a <u>VERTEX</u> at (,). The y-intercept is at (,).

Practice

1. y = -2(x+2)(x+4)

$$a = p = q =$$

x-intercept(s)? Vertex? Standard form?

2.
$$y = \frac{1}{2}(x+2)(x-6)$$

a = p = q =

x-intercept(s)? Vertex? Standard form?

$$a = p = q =$$

x-intercept(s)? Vertex? Standard form?

a = p = q =

x-intercept(s)? Vertex? Standard form?

