FUNCTION INTRODUCTION

Vocabulary

1. Relation - pairings, often represented as \qquad or
\qquad -.
between \qquad and
\qquad .
2. Function - a relation between two variables in which each \qquad gives exactly one \qquad _.
3. Domain - the set of all \qquad values (x's)
4. Range - the set of all \qquad values (y's)
5. Independent Variable - the input variable which an experimenter has \qquad over or which is not
\qquad by anything.
6. Dependent Variable - the output variable which is found as a \qquad of the independent variable.

Examples

1. Is this a function? What's the domain and range?

a. yes
domain: $\{1,2,3,4,5\}$
range: $\{2,3,4,5,6,7\}$
b. no
domain: $\{1,2,5\}$ range: $\{2,3,4,5,7\}$
c. no
domain: $\{2,3,4,5,7\}$
range: $\{1,2,5\}$
2. Is this graph a function? What's the domain and range? Day
a. yes
domain: $\{-1,0,1,2,3,4,5\}$
range: $\{-3,-2,-1,0,1,2,3\}$
b. no
domain: $-1 \leq x \leq 5$
range: $-3 \leq y \leq 3$
c. no
domain: $-3<x<3$
range: $-1<y<5$
3. Is this graph a function? What's the domain and range?

a. no
domain: $-5<x \leq 5$
range: $-2<y \leq 2$
b. yes
domain: $-5<x \leq 5$
range: $-2 \leq y \leq 2$
c. yes
domain: $-2 \leq x \leq 2$
range: $-5 \leq y \leq 5$
4. Is this table a function? What's the domain and range?

x	y
-2	2
-1	2
0	2
1	2
2	2

a. yes
domain: $\{-2,-1,0,1,2\}$
range: $\{2\}$
b. no
domain: $\{2\}$
range: $\{-2,-1,0,1,2\}$
c. yes
domain: $-2 \leq x \leq 2$
range: $\{2\}$
2. Is the set $\{(-2,12),(-1,3),(0,0),(1,3),(2,12)\}$ a function? What's the domain and range?
a. yes
domain: $\{-2,-1,0,1,2\}$
range: $\{0,3,12\}$
b. no
domain: $\{0,3,12\}$
range: $\{-2,-1,0,1,12\}$
c. yes
domain: $-2 \leq x \leq 2$
range: $0 \leq y \leq 12$
3. Is this graph a function? What's the domain and range?

a. yes
domain: $\{-4,-3,-2,-1,0,1\}$
range: $\{-6,-5,-4,-3,-2,-1,0,1,2,3,4\}$
b. no
domain: $x \geq-4$
range: all real numbers
c. no
domain: $x \leq-4$
range: $-6 \leq y \leq 4$
4. Is this graph a function? What's the domain and range?

a. yes
domain: all real numbers range: all real numbers
b. no
domain: all real numbers range: all real numbers
c. yes
domain: $-2 \leq x \leq 2$
range: $-3 \leq y \leq 3$

Using function notation is like replacing \qquad with \qquad so that we have $f(x)=m x+b$ instead of $y=m x+b$, but it's slightly more than that.

It shows the input (x) and output (y) pair of values of a functional relationship at the same time.

$$
f(x)=4 x-3
$$

Consider $\mathrm{y}=2 \mathrm{x}+1$ versus $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$. Find y when x is 4 .

Examples

If $f(x)=4-5 x, g(x)=2 x^{2}+14 x-16$, and $p(t)=3(2)^{t}-1$, evaluate the following using understanding of function notation.

1. $f(-2)$
2. $g(-1)$
3. $p(0)$
4. $g(-2)$
5. $\mathrm{p}(2)$
6. $f(-3)$

PARENT FUNCTION
OF QUADRATICS
$\mathbf{f}(\mathbf{x})=\mathbf{X}^{2}$

x	y
-3	
-2	
-1	
0	
1	
2	
3	

Vocabulary

Parabola

Vertex

Axis of symmetry

Maximum/minimum

Roots/Zeros/X-Intercepts

Here's a function h. Evaluate h for the given inputs and find all the possible inputs for which h results in the given outputs.

7. $h(5)=$
8. $h(-1)=$
9. $h(0)=$
10. $h(-3)=$
11. x such that $h(x)=-2$
12. x such that $h(x)=2$

The graph below represents a linear function and an absolute value function. $f(x)=-x+4$ and $g(x)=|x|-6$. Find the solutions to the equation $f(x)=g(x)$.

Graphing Quadratic Functions

Vertex Form

$$
y=a(x-h)^{2}+k
$$

Example:
$y=-2(x+1)^{2}+8$
$a=\quad h=\quad k=$
Vertex:
Axis of Symmetry:

This graph is a parabola that has been reflected over the x-axis, stretched vertically, and translated left 1 unit and up 8 units.

1. $y=(x+3)^{2}-5$
$\mathrm{a}=\mathrm{h}=\mathrm{k}=$

Vertex?
Axis of Symmetry?
Maximum or minimum?

2. $y=-(x-2)^{2}-5$
$\mathrm{a}=\mathrm{h}=\mathrm{k}=$

Vertex?
Axis of Symmetry?
Maximum or minimum?

CONVERTING FROM STANDARD FORM TO VERTEX FORM

Completing the Square

 Steps for Functions and Expressions\checkmark Check to see function is in standard form, separating \qquad from \qquad .
\checkmark \qquad a from variable terms.
\checkmark Take \qquad the coefficient of x, \qquad it,
\qquad it inside and \qquad it outside.

* Or vice versa
* Don't forget what's out front!
\checkmark Factor the \qquad and rewrite as a factor squared.

Examples

1. $f(x)=2 x^{2}+20 x+49$
2. $y=-2(x-7)^{2}+8$
$\mathrm{a}=\mathrm{h}=\mathrm{k}=$

Vertex?
Axis of Symmetry?
Maximum or minimum?
4. $y=-(x+2)^{2}$
$\mathrm{a}=\mathrm{h}=\mathrm{k}=$

Vertex?
Axis of Symmetry?
Maximum or minimum?
5. $y=2(x+3)^{2}-6$
$\mathrm{a}=\mathrm{h}=\mathrm{k}=$

Vertex?
Axis of Symmetry?
Maximum or minimum?
6. $y=-\frac{1}{2}(x+4)^{2}+7$
$\mathrm{a}=\mathrm{h}=\mathrm{k}=$

Vertex?
Axis of Symmetry?
Maximum or minimum?

3. $h(x)=6 x^{2}-84 x+290$
4. $p(x)=-4 x^{2}-8 x-9$

Graphing Quadratic Functions

Standard Form

$$
y=a x^{2}+b x+c
$$

Example:
$y=-2 x^{2}-4 x+6$
$a=\quad c=$

Maximum or minimum?
Y-intercept?
Vertex form?

Graphing Quadratic Functions
Intercept/Factored Form

$$
y=a(x-p)(x-q)
$$

Example:
$y=(x+3)(x-5)$
$a=\quad p=\quad q=$
x-intercept(s)?
Vertex?
Standard form?

This parabola has an AXIS OF SYMMETRY at $x=$, a VERTEX at $(, \quad)$ which is also considered a MAXIMUM, a Y-INTERCEPT at (,).

Practice

1. $y=x^{2}-2 x-3$
$a=\quad c=$

Maximum or minimum?
Y-intercept?
Vertex form?

This parabola has X-INTERCEPTS at (,) and (,). The AXIS OF SYMMETRY is half-way in between at $x=$, with a VERTEX at (\quad, \quad). The y-intercept is at (\quad, \quad).

Practice

1. $y=-2(x+2)(x+4)$
$a=\quad p=\quad q=$
x-intercept(s)?
Vertex?
Standard form?

2. $y=-2 x^{2}+12 x-18$ $a=\quad c=$

Maximum or minimum? Y-intercept? Vertex form?

3. $y=-x^{2}+6 x-5$
$a=\quad c=$
Maximum or minimum? Y-intercept?
Vertex form?
4. $y=2 x^{2}-8$
$a=\quad c=$

Maximum or minimum?
Y-intercept?
Vertex form?
5. $y=5 x^{2}-40 x+75$
$a=\quad c=$
Maximum or minimum?
Y-intercept?
Vertex form?

Day 6
Back
2. $y=\frac{1}{2}(x+2)(x-6)$
$a=\quad p=\quad q=$
x-intercept(s)?
Vertex?
Standard form?
3. $y=-(x-5)(x-1)$
$a=\quad p=\quad q=$
x-intercept(s)?
Vertex?
Standard form?
4. $y=(x+7)(x-3)$
$a=\quad p=\quad q=$
x-intercept(s)?
Vertex?
Standard form?

