EXPONENTIAL FUNCTIONS

 Day 1Front

$$
\mathbf{Y}=\boldsymbol{A} \mathbf{B}^{\mathbf{X}}
$$

$y=4(2)^{x}$

$$
y=4\left(\frac{1}{2}\right)^{x} \quad \begin{array}{|l|l|}
\hline x & y \\
\hline & \\
\hline
\end{array}
$$

EXPONENTIAL CROWTH AND DECAY $Y=A(1 \pm R)^{x}$
 A=START
 R=PERCENT CHANGE
 X=HOW OFTEN CHANGE OCCURS Y=RESULT OF CHANGE OVER TIME

1. The world population in 2000 was approximately 6.08 billion. The annual rate of increase was aboutl.2\%. If the world population continued to grow this fast, how many people would be on Earth now?
2. A computer is purchased for $\$ 2000$ but loses 20% of its value each year. How much will it be worth in 4 years?
3. Movie tickets now average $\$ 9.75$ a ticket, but are increasing in cost by 15% per year. How much will they cost in 5 years?
4. A Honda Accord depreciates at 18% per year. Six years ago it was purchased for $\$ 21,000$. What is it worth now?

B=CHANGE

X=HOW OFTEN CHANCE OCCURS Y=RESULT OF CHANGE OVER TIME

1. March Madness is an example of exponential decay. At each round of the tournament, only the winning teams stay, so the number of teams playing at each round is half of the number of teams playing in the previous round. If 64 teams are a part of the official bracket at the start, how many teams are left after 5 rounds of play?
2. Bacteria have the ability to multiply at an alarming rate, where each bacteria splits into two new cells, doubling the number of bacteria present. If there are ten bacteria on your desk, and they double every hour, how many bacteria will be present tomorrow (desk uncleaned)?
3. The zombie apocalypse has begun! Every month, Atlanta survivors take a census to keep a record of the new human population. There are currently 450,000 people living in Atlanta. One month after the zombie outbreak, there are only approximately 90,000 people. One more month later, there are only 18,000 people. How many people do you think would survive the zombie apocalypse in Atlanta for a year?
4. Phosphorus-32 is used to study a plant's use of fertilizer. It has a halflife of 14 days. Write the exponential decay function for a $50-\mathrm{mg}$ sample. Find the amount of phosphorus-32 remaining after 84 days.
5. A population of bacteria can be modeled by the function
$f(t)=1000(0.98)^{t}$, where t represents the time since the population started decaying, and $f(t)$ represents the population of the remaining bacteria at time t . What is the rate of decay for this population?
a. 98%
b. 2%
c. 0.98%
d. 0.02%
6. The equation $V(t)=12,000(0.75) t$ represents the value of a motorcycle \dagger years after it was purchased. Which statement is true?
a. The motorcycle cost $\$ 9000$ when purchased.
b. The motorcycle cost $\$ 12,000$ when purchased.
c. The motorcycle's value is decreasing at a rate of 75% each year.
d. The motorcycle's value is decreasing at a rate of 0.25% each year.
7. Marc bought a new laptop for $\$ 1250$. He kept track of the value of the laptop over the next three years, as shown in the table below. Which function can be used to determine the value of the laptop for x years after the purchase?
a. $f(x)=1000(1.2)^{x}$
b. $f(x)=1250(1.2)^{x}$
c. $f(x)=1000(0.8)^{x}$
d. $f(x)=1250(0.8)^{x}$

Years After Purchase	Value in Dollars
1	1000
2	800
3	640

4. A certain population of bacteria has an average growth rate of 2%. The formula for the growth of the bacteria's population is \qquad If you begin with 200
bacteria, about how many bacteria will there be after 100 hours?
a. 7
b. 272
c. 1,449
d. 20,000

A sequence is a list of numbers or objects, called \qquad in a certain order.

For arithmetic sequences, the difference between any two called a \qquad the number being
\qquad to any term to achieve the next term.

For geometric sequences, the \qquad of consecutive terms is always the same. This number is called the \qquad _
\qquad the number being \qquad to any term to achieve the next term.

Identify the following sequences as arithmetic or geometric. Then name the common difference or common ratio.

1. $2,6,10,14, \ldots$
2. $2,6,18,54, \ldots$
3. $56,84,126,189, \ldots$
4. $56,26,-4,-34, \ldots$
5. $25,75,125,175, \ldots$
6. $25,75,225,675, \ldots$
7. $0.1,1,10,100, \ldots$
8. $0.1,0.15,0.2,0.25, \ldots$

RECURSIVE FORMULAS

Front
A recursive formula is a formula that says how to determine the next term based on the previous term.

Arithmetic Sequence Recursive Formula $\left\{\begin{array}{c}a_{1}= \\ a_{n}=a_{n-1}+d\end{array}\right.$ Geometric Sequence Recursive Formula $\left\{\begin{array}{c}a_{1}= \\ a_{n}=r \cdot a_{n-1}\end{array}\right.$ Match the following recursive formulas with their sequences.

1. $5,15,25,35, \ldots$
a. $a_{n}=a_{n-1}-2.5$
2. $8,-20,50,-125, \ldots$
b. $a_{n}=a_{n-1}+2$
3. $5,15,45,135, \ldots$
C. $a_{n}=a_{n-1}+5$
4. $20,17.5,15,12.5, \ldots$
d. $a_{n}=a_{n-1}+10$
5. $-8,-3,2,7, \ldots$
6. $1000,500,250,125, \ldots$
f. $a_{n}=0.5 a_{n-1}$
7. $-99,-97,-95,-93, \ldots$
g. $a_{n}=5 a_{n-1}$
8. $2,10,50,250, \ldots$
h. $a_{n}=-2.5 a_{n-1}$

FORMULAS

An explicit formula is a formula that allows you to find any term.

Arithmetic Sequence Explicit Formula $\quad a_{n}=a_{1}+d(n-1)$

Geometric Sequence Explicit Formula $a_{n}=a_{1} \cdot r^{n-1}$

Example 1: Find the $21^{\text {st }}$ term of the sequence $32,26,20,14,8, \ldots$

Example 2: Find the $11^{\text {th }}$ term of the sequence $1024,512,256, \ldots$ Find the given term of each of the following sequences.

1. Given the sequence $25,40,55,70, \ldots$ what is the $24^{\text {th }}$ term?
2. Given the sequence $0.01,0.2,4,80, \ldots$ what is the $9^{\text {th }}$ term?
3. Given the sequence $88,81,74,67, \ldots$ what is the $18^{\text {th }}$ term?
4. Given the sequence $384,96,24,6, \ldots$ what is the $7^{\text {th }}$ term?

Write a recursive formula for the following sequences
2. $3,-9,-21,-33, \ldots$

Use the given formulas to generate the first four terms of the corresponding sequences.
3. $\left\{\begin{array}{c}a_{1}=54 \\ a_{n}=\frac{1}{3} a_{n-1}\end{array}\right.$
4. $\left\{\begin{array}{c}a_{1}=10 \\ a_{n}=a_{n-1}+3\end{array}\right.$
5. $\left\{\begin{array}{c}a_{1}=10 \\ a_{n}=3 a_{n-1}\end{array}\right.$

Sequences Multiple Choice Practice

1. The formula of the nth term of the sequence $3,-6,12,-24,48 \ldots$ is
a. $a_{n}=-2(3)^{n}$
C. $a_{n}=-2(3)^{n-1}$
b. $a_{n}=3(-2)^{n}$
d. $a_{n}=3(-2)^{n-1}$
2. What is a formula for the nth term of sequence B shown below?
$B=10,12,14,16, \ldots$
a. $b_{n}=8+2 n$
b. $b_{n}=10+2 n$
c. $b_{n}=10(2)^{n}$
d. $b_{n}=10(2)^{n-1}$
3. A sequence has the following terms: $a_{1}=4, a_{2}=10, a_{3}=25, a_{4}=62.5$.

Which formula represents the nth term in the sequence?
a. $a_{n}=4+2.5 n$
C. $a_{n}=4(2.5)^{n}$
b. $a_{n}=4+2.5(n-1)$
d. $a_{n}=4(2.5)^{n-1}$
4. The third term in an arithmetic sequence is 10 and the fifth term is 26 . If the first term is a_{1}, which is an equation for the nth term of this sequence?
a. $a_{n}=8 n+10$
C. $a_{n}=16 n+10$
b. $a_{n}=8 n-14$
d. $a_{n}=16 n-38$
5. At her job, Pat earns $\$ 25,000$ the first year and receives a raise of $\$ 1000$ each year. The explicit formula for the nth term of this sequence is $a_{n}=25000+1000(n-1)$. Which rule best represents the equivalent recursive formula?
a. $\quad a_{1}=25000 ; a_{n}=1000 a_{n-1}$
b. $\quad a_{1}=1000 ; a_{n}=25000 a_{n+1}$
c. $a_{1}=25000 ; a_{n}=a_{n-1}+1000$
d. $\quad a_{1}=25000 ; a_{n}=a_{n+1}+1000$
6. The formula $\left\{\begin{array}{c}a_{1}=3000 \\ a_{n}=0.80 a_{n-1}\end{array}\right.$ can be used to model which scenario?
a. The first row of a stadium has 3000 seats, and each row thereafter has 80 more seat sthan the row in front of it.
b. A bank account starts with a deposit of $\$ 3000$, and each year it grows by 80%.
c. The last row of a stadium has 3000 seats, and each row before it has 80 fewer seats than the row behind it.
d. The initial value of a specialty toy is $\$ 3000$, and its value each of the following years is 20% less.
7. Which function represents this sequence?

\boldsymbol{n}	1	2	3	4	5	\ldots
$\boldsymbol{a}_{\boldsymbol{n}}$	-1	1	3	5	7	\ldots

a.
$a_{n}=a_{n-1}+1$
c.

$$
a_{n}=2 a_{n-1}
$$

b.
$a_{n}=a_{n-1}+2$
d.
$a_{n}=2 a_{n-1}-3$
8. A theater has more seats in the back rows than it has in the front rows. At a particular theater each row has two more seats than the row in front of it. Which formulas model this situation if the front row has twenty seats?
a. $a_{n}=a_{n-1}+2$ and $a_{n}=2 n+20$ c. $a_{n}=2 a_{n-1}$ and $a_{n}=2 n+20$
b. $a_{n}=a_{n-1}+2$ and $a_{n}=2 n+18$
d. $a_{n}=2 a_{n-1}$ and $a_{n}=2 n+18$
9. Select TWO of the following statements that are TRUE based on the following pictorial sequence.
a.

$$
a_{n}=2 a_{n-1}
$$

b.

$$
a_{n}=a_{n-1}+2
$$

d.

$$
a_{n}=3 a_{n-1}
$$

c.

$$
a_{n}=a_{n-1}-2
$$

e. $\quad a_{n}=2 n+1$
$a_{n}=a_{n-1}-2$
f.
$a_{n}=2 n+3$

